Question Classification in Question Answering Systems

نویسنده

  • Håkan Sundblad
چکیده

Question answering systems can be seen as the next step in information retrieval, allowing users to pose questions in natural language and receive succinct answers. In order for a question answering system as a whole to be successful, research has shown that the correct classification of questions with regards to the expected answer type is imperative. Question classification has two components: a taxonomy of answer types, and a machinery for making the classifications. This thesis focuses on five different machine learning algorithms for the question classification task. The algorithms are k nearest neighbours, naïve bayes, decision tree learning, sparse network of winnows, and support vector machines. These algorithms have been applied to two different corpora, one of which has been used extensively in previous work and has been constructed for a specific agenda. The other corpus is drawn from a set of users' questions posed to a running online system. The results showed that the performance of the algorithms on the different corpora differs both in absolute terms, as well as with regards to the relative ranking of them. On the novel corpus, naïve bayes, decision tree learning, and support vector machines perform on par with each other, while on the biased corpus there is a clear difference between them, with support vector machines being the best and naïve bayes being the worst. The thesis also presents an analysis of questions that are problematic for all learning algorithms. The errors can roughly be divided as due to categories with few members, variations in question formulation, the actual usage of the taxonomy, keyword errors, and spelling errors. A large portion of the errors were also hard to explain. This work has been supported by GSLT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

دسته‌بندی پرسش‌ها با استفاده از ترکیب دسته‌بندها

Question answering systems are produced and developed to provide exact answers to the question posted in natural language. One of the most important parts of question answering systems is question classification. The purpose of question classification is predicting the kind of answer needed for the question in natural language. The  literature works can be categorized as rule-based and learning...

متن کامل

ارایه یک پیکره‌ پرسش و پاسخ مذهبی در زبان فارسی

Question answering system is a field in natural language processing and information retrieval noticed by researchers in these decades. Due to a growing interest in this field of research, the need to have appropriate data sources is perceived. Most researches about developing question answering corpus area have been done in English so far, but in other languages as Persian, the lack of these co...

متن کامل

Optimizing question answering systems by Accelerated Particle Swarm Optimization (APSO)

One of the most important research areas in natural language processing is Question Answering Systems (QASs). Existing search engines, with Google at the top, have many remarkable capabilities. But there is a basic limitation (search engines do not have deduction capability), a capability which a QAS is expected to have. In this perspective, a search engine may be viewed as a semi-mechanized QA...

متن کامل

A New Statistical Model for Evaluation Interactive Question Answering Systems Using Regression

The development of computer systems and extensive use of information technology in the everyday life of people have just made it more and more important for them to make quick access to information that has received great importance. Increasing the volume of information makes it difficult to manage or control. Thus, some instruments need to be provided to use this information. The QA system is ...

متن کامل

Investigating Embedded Question Reuse in Question Answering

The investigation presented in this paper is a novel method in question answering (QA) that enables a QA system to gain performance through reuse of information in the answer to one question to answer another related question. Our analysis shows that a pair of question in a general open domain QA can have embedding relation through their mentions of noun phrase expressions. We present methods f...

متن کامل

Boosting Passage Retrieval through Reuse in Question Answering

Question Answering (QA) is an emerging important field in Information Retrieval. In a QA system the archive of previous questions asked from the system makes a collection full of useful factual nuggets. This paper makes an initial attempt to investigate the reuse of facts contained in the archive of previous questions to help and gain performance in answering future related factoid questions. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007